Thomas Kehrenberg
21st April 2022
PAL reading group
Bayesian networks are just visual representations of independencies.
\(P(x_1, ..., x_n)=\prod_i P(x_i|pa(x_i))\)
in this case:
\(P(A, B, C, D, E)=P(A)P(B|A)P(C|B)P(D|B)P(E|A,C)\)
No.
\(P(A,B)=P(A)P(B|A)\)
\(P(A,B)=P(B)P(A|B)\)
So: meaningless arrows for now
\(P(A, B, C) \\= P(C|A)P(B|A)P(A)\)
so: \(P(C|A,B)=P(C|A)\)
so: \(B\perp C|A\)
\(P(A, B, C)\\=P(C|A)P(A|B)P(B)\)
so: \(P(C|A,B)=P(C|A)\)
so: \(B\perp C|A\)
implied factorization: \(P(A, B, C) = P(C|A, B)P(A)P(B)\)
so: \(P(A|B)=P(A)\)
so: \(A\perp B\)
(but: \(A\not\perp C\quad B\not\perp C\quad A\not\perp C|B\quad B\not\perp C|A\quad A\not\perp B|C\))
wanted: \(A\perp B\) (and no other independence)
wanted: \(A\perp B\) (and no other independence)
Potentially.
But maybe 3 nodes is not enough to define time.
\(A\perp B\)
\(X\perp Y|A,B\)
(there are 543 DAGs with 4 nodes...)
\(G_t = \alpha G_{t-1} + \beta H_{t-1} + \xi_t\)
\(H_t = \gamma G_{t-1} + \delta H_{t-1} + \eta_t\)
\(\xi_t\), \(\eta_t\): iid noise (very important)
You will be able to uniquely recover the structure of the chain.
if you have variables \(A\), \(B\), \(X\), and \(Y\) that are consistent with this DAG,
then \(A\) and \(B\) happened before \(X\) and \(Y\):
\(A, B <_T X, Y\)
(this is Statistical Time)
Assume stochastic world
\(X\perp Y|A,B\)
\(A\not\perp B|X,Y\)
of the form:
we know the true time and check whether statistical time agrees with it
\(A\perp B\) ?
\(A\not\perp B|X,Y\) ?
\(X\perp Y|A,B\) ?
\(X\not\perp Y\) ?